2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Milo: A visual programming environment for
Data Science Education

Arjun Rao*, Ayush Bihanif, Mydhili Nair!
Department of Information Science and Engineering
Ramaiah Institute of Technology
Bangalore, India
Email: *mailarjunrao @ gmail.com, Tbihani37@gmail.c0m, imydhili.nair@msrit.edu,

Abstract—Most courses on Data Science offered at universities
or online require students to have familiarity with at least one
programming language. In this paper, we present, “Milo”, a
web-based visual programming environment for Data Science
Education, designed as a pedagogical tool that can be used by
students without prior-programming experience. To that end,
Milo uses graphical blocks as abstractions of language specific
implementations of Data Science and Machine Learning(ML)
concepts along with creation of interactive visualizations. Using
block definitions created by a user, Milo generates equivalent
source code in JavaScript to run entirely in the browser. Based
on a preliminary user study with a focus group of undergraduate
computer science students, Milo succeeds as an effective tool for
novice learners in the field of Data Science.

I. INTRODUCTION

Over the last four years, we have seen a lot of growth in
the use of Data Science in modern applications. According to
LinkedIn’s 2017 report [1], the top ranked emerging jobs in the
U.S. are for Machine Learning Engineers, Data Scientists, and
Big Data Engineers. The report also highlights that while the
number of roles in the Data Science domain has risen many
fold since 2012, the supply of candidates for these positions
is not meeting the demand.

The most common path taken towards understanding Data
Science is still through university programs, online courses and
workplace training. We surveyed popular online courses in the
domain using Class Central [2] and found that most courses
either require prior programming experience in Python or use
tools like MATLAB, Octave, R, Weka, Apache Spark, etc.
which can be intimidating to non-computer science majors.

In the general field of computer science education, there
have been many efforts for introducing fundamental concepts
of programming to beginners through visual tools. Examples
include those on Code.org or MIT’s Scratch project [3].
However there have been fewer efforts in building tools for
introducing concepts in Data Science and Machine Learning
to non-programmers.

In this paper, we present “Milo”, a web based visual
programming environment for Data Science Education. Our
primary aim when designing Milo, was to build a platform that
is approachable to non-computer science majors, and allows
students to self-learn concepts of Data Science and Machine
Learning. To support these goals, we built Milo to work in the

978-1-5386-4235-1/18/$31.00 (© 2018 IEEE

browser, and use a block-based programming paradigm that is
suitable for novices and non-programmers. The main interface
of Milo is shown in Figure 1, and consists of graphical blocks
which abstract implementations of various concepts covered
in typical Data Science courses. Supported concepts include
basic statistics, linear algebra, probability distributions, ML
algorithms, and more. The workspace is built using Blockly '
and the blocks have a similar look and feel to that of Scratch
[3].

Our target audience for Milo, is two fold. On one hand we
target students from high-school to undergraduate students in
non-computer science fields. For students who are not familiar
with programming but have an understanding of basic concepts
in linear algebra, and statistics, we feel that Milo is a good
avenue for getting hands on exposure to using these concepts
in solving practical problems, and getting exposure to the
world of programming in an intuitive and visually rich manner.
On the other hand we target faculty and educators, who design
introductory courses for non-programmers in the fields of Data
Science, Machine Learning and Linear Algebra.

The rest of this paper is organized as follows. Section
IT highlights related work in this domain, particularly visual
programming environments and tools that we referred to. In
Section III, we talk about Milo’s programming model and
compare this with other popular approaches. This is followed
by details of our implementation in Section IV. Section V
summarizes a preliminary evaluation of Milo via a user study.
We then note a few limitations of our work in Section VI,
and present a road map for the future (Section VII) and our
conclusions (Section VIII).

II. RELATED WORK

Visual programming environments are alternatives to text
based programming, having logic constructs expressed using
graphical operators and elements. This is not a new concept,
as prior work on such forms of programming date back to
the 90s. Work done by [4], [5], and [6], have influenced
many projects from the 90s to present times, showing that
visual programming environments are commonly employed in
practice.

Uhttps://developers.google.com/blockly/

211

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

«—Output
/
.................................. J
Spreadsheet View
\ oo B ombsen Ot §
o Sep o
Data Explorer - X I
Workspace ae e s
® et 5 o
° s m
14 02
Y S T S—
" 18 02
Dataset Properties s 3 14 o1
Dataset s 7 2 2
Metadata o 2 :

Fig. 1. The top left screenshot shows the Milo IDE Interface consists of the top menu, a toolbox that holds blocks organized by category, the workspace for
building block based programs, and the output pane. The bottom right screenshot shows the data explorer with the Iris dataset loaded in a spreadsheet like

view.

Scratch [3] is a visual programming language and online
community targeted primarily at novice users, and is used
as an introductory language to delve into the field of pro-
gramming through blocks. Our main motivation for choosing
a block-based design for Milo was Scratch, due to it’s proven
track record for being a popular introductory tool for non-
programmers to get involved with computer science. The
user interface of Scratch follows a single-window, multi-pane
design to ensure that key components are always visible. The
success of this approach motivated us to build a single window
IDE in Milo, that allows execution of programs along side the
workspace used to create them. This prevents distraction for
users and presents all the important aspects of the IDE in one
place.

According to Zhang et al. [6], a single environment for
researchers to manage data and perform analysis, without
having to learn about multiple software systems and their
integration, is highly effective. Thus Milo borrows these ideas
and includes a Data Explorer for viewing and understanding
datasets in a spreadsheet like format, along with the main
block workspace that is used to perform operations on data
or train ML models. (See Fig 1)

BlockPy [7] is a web based python environment built using
Blockly with a focus on introductory programming and data
science. This is primarily done by integrating a host of real-
world datasets and block based operations to create simple
plots of data. However we found that BlockPy is primarily
suited to give a gentle introduction to Python and falls short
of the requirements of a full-fledged Data Science course.

Another popular tool used for teaching Data Science is

Jupyter Notebooks?. While it is a great tool for exploratory
data analysis and quick prototyping, we found that Jupyter
notebooks are more suited for Computer Science majors, and
those who are familiar with concepts of programming in
general, and more specifically those who know Python or Julia.

III. COMPARISONS BETWEEN PROGRAMMING MODELS

Milo uses a block based programming model. This approach
to programming is unlike that of popular visual tools for
Machine Learning like Rapid Miner® or Orange*, as they
follow a dataflow approach to programming. In this section,
we focus on the programming model of Milo, and compare this
with that of tools that use a dataflow approach. Additionally,
we compare Milo with Scratch, and note their differences.

When compared with Scratch, Milo’s programming model
may seem very similar in terms of look and feel. This
is because they are both rendered using Blockly, however,
the styles, blocks, and their connections are designed for
different use cases, and hence the language vocabulary and
block patterns are different. Unlike Scratch, Milo does not
use an event driven model. This is because, we do not have
sprites, or a stage with graphical objects that interact with
one another. Instead, Milo uses a sequential approach to
programming, where blocks are executed from top to bottom in
the workspace, ie. blocks placed above others will be executed
first. Additionally, Milo generates syntactically correct source
code from the block definitions, and this is presented in

Zhttps://jupyter.org
3https://rapidminer.com/
“https://orange.biolab.si/

212

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

Train regressor classifier with
1 Regression

p(z) = ———— —
1+ e (Bo+Biz)

Visualize Regression

(Equation for Logistic function)

var logistic = new LogisticRegression({

alpha:0.1,
c iterations: 20,
[logistic ~ | ode lambda: 0,
e Generation threshold: 0.5
features = . });
Togistic
fit(features,classes)
wvisualize(;

(Representation using blocks)

Fig. 2. Shows how a machine learning concept such as a classifier using logistic regression is represented using blocks on Milo, along with the code it

generates.

the code tab of the Ul During our prototyping stages, we
found that using such a model makes the transition to real
programming languages after Milo, fairly intuitive. The block
constructs and their respective translations in JavaScript or
Python are easily comparable and the sequential flow of
execution is preserved after the translation.

When it comes to dataflow paradigms, we feel that while
such paradigms are intuitive in understanding the transforma-
tions from input to output, it is less useful in understanding
the internal steps of this transformation. It makes Machine
Learning algorithms seem like black boxes to novice students,
obscuring implementation details. In Milo, students can drag
a single block, such as the one shown in Fig. 2, that trains a
logistic regression based classifier using the given input, and
produces an animated visualization of the training steps, which
is similar to the black box like approach of dataflow program-
ming. However they can also go a step further and build this
block themselves by using primitive blocks for manipulating
input vectors, and math operators like exponential functions
or logarithms. Thus novice students would first learn concepts
using built-in high-level blocks, and then figure out how to
build these algorithms themselves using primitive blocks that
they assemble from scratch.

IV. IMPLEMENTATION

We implemented Milo’s block language using Google’s
Blockly library, which is used to build visual programming
editors. The main user interface of Milo, as shown in Figure
1, consists of the workspace where block based programs are
assembled, the output pane, a menu bar that lets users switch
between the workspace, the data explorer, which is a space for
viewing datasets in a spreadsheet like format, and a tab that
shows generated code. The tool also includes a few popular
datasets that are used in introductory ML courses.

In Milo, all programming constructs and implementations
of various Data Science concepts are represented as intercon-
necting drag and drop blocks. They are the basic primitives for
building any program on the platform. Connections between
blocks are constrained such that incompatible blocks cannot
be connected together. This allows us to generate syntactically
correct code from block representations and prevent logical
errors. Figure 2 is an example of how a machine learning
concept like Logistic regression is represented through blocks
and translated to source code.

TABLE I
TYPES OF BLOCKS IN MILO

Create Neual Network
Number of features ([0

Chained Input Blocks have space for
chaining a number of supplementary input
blocks (such as the Add Layers input in
the block on the left), and are used to cre-
ate dynamically defined objects. Examples
include creating different neural network
architectures by chaining neural network
layer definitions one below the other or
for creating multiple plots by chaining plot
definitions.

Add layers

Options

Compute blocks are those that have a notch
on the left that represents a return value
connection. These Blocks optionally take
inputs and always return a value that is the
result of some computation. The blocks may
have additional options for advanced usage
that is indicated by presence of a gear icon,
on the block.

(@) create list with

Operation blocks are those that represent
a single operation/function that does not
return any value. These blocks can take
input and additionally may transform their
input but they do not return any value. The
notches above and below the block are used
to chain operations to execute in a particular
order or to act as inputs to Chained Input
Blocks

Visualize

KNN model

The blocks result in generation of syntactically correct
Javascript code, which is used for execution on the web.
We used tensorflow.js > for implementing low-level math
operations like matrix multiplications, vector manipulation,
etc. Table I illustrates the various types of blocks available
in Milo.

The Milo Platform consists of a NodeJS® based web server,
which acts as the backend, and the frontend for the platform
is written in AngularJS’. The projects created using Milo,
are stored as XML documents in a MongoDB database 8.
As part of the client side code, we include an execution
library, which exposes high-level APIs for implementations of
various Machine Learning algorithms, similar to what scikit-
learn’ does in Python. The pre-made blocks for algorithms

Shttps://js.tensorflow.org
Shttps://nodejs.org
7https://angularjs.org
8https://www.mongodb.com
9http://scikit-learn.org

213

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

like KMeans, KNN, etc are translated to calls to functions
in this execution library, and these in-turn are implemented
using tensorflow.js and custom javascript code. These pre-
made ML algorithm blocks also come with corresponding
blocks to generate visualizations that show models being
updated with each iteration of training, such as animated
decision boundaries, or clustering data points in real time with
iterations of training. Additionally, for some algorithms, like
KNN, there are interactive visualization blocks that allow users
to place a new test point on the 2d plane showing a scatter
plot of the training dataset and see in real time what class the
model might assign to this point, and what neighbours were
considered. These interactive visualizations and other plotting
functions in Milo are implemented using D3.js'°.

V. PRELIMINARY EVALUATION

In order to evaluate our implementation, we conducted a
user study, with a focus group of 20 undergraduate computer
science students.

A. Study Setup

Participants were selected using a convenience sampling
approach from a class of students who were taking their
first introductory course in Machine Learning. The class
follows the book Introduction to Machine Learning by Ethem
Alpaydin [8]. Prior to the study we asked participants, to
report their familiarity with various ML concepts, and their
programming experience. We found that only 10% of par-
ticipants reported that they would consider themselves more-
comfortable with programming, while 55% considered them-
selves less-comfortable, with 25% of participants reporting
that they had never programmed in Python/R or Julia before. In
order to evaluate the usefulness of Milo in a course, we asked
participants of the study to take a model class on Machine
Learning that uses Milo as part of the pedagogy via a flipped
classroom approach [9]. During the class participants used
Milo, to perform clustering using K-Means on the Iris dataset
[10].

After the class we administered a post-study questionnaire.
The questionnaire asked students to rate various features of
Milo that they tried, in terms of usefulness and ease of use,
along with their perceived level of understanding K-Means
clustering after the flipped-classroom activity. They were also
asked open-ended questions that prompted feedback about
various activities done as part of the class.

B. Study Results

o As the participants were taking a course on machine
learning which followed a traditional classroom model,
their experience with a flipped classroom model using
Milo lead them to have highly positive sentiments.

e 90% of participants reported that visualizations were
very easy to create using Milo and supplemented their
understanding of the concepts.

1Onttps://d3js.org/

o The study was mainly preliminary in nature, to evaluate
the tool, in terms of usefulness and whether or not it met
the requirements of students learning Machine Learning
concepts for the first time, and based on the survey
responses, we found that 70% of students felt the tool
would be very useful for novice learners.

VI. LIMITATIONS

Due to the preliminary nature of our user study, our focus
group size was limited. The students in the study had some
level of prior-programming experience as they had taken at
least one formal programming course. Considering that this
was an initial study, we chose computer science students as
our participants, because we felt they would be in a position
to evaluate the merits of the tool in terms of what works, and
what is missing. However a real test for the tool will only
be when we conduct a user study with non-computer science
students. As the main focus is education, Milo is not intended
to be used for training and developing production ML models.
The platform does not support advanced neural networks such
as LSTM, GRU, CNN etc. Large datasets that exceed a few
million rows may slow down browsers and may not be suitable
for use in Milo.

VII. FUTURE WORK

Our goal with Milo is to help learners understand complex
concepts using a simple visual approach. Concepts such as
neural networks, and multivariate distributions need to be
explained in an intuitive way to new learners. Keeping this
in mind, the next iteration of Milo will include interactive
visualization for neural networks, support for multinomial
distributions, multivariate gaussians, etc. to make these con-
cepts more approachable to beginners. To improve code re-
usability, the platform will let users download generated code
and results which can then be embedded in external blogs
or other websites. While our current security model prevents,
to a large extent, execution of code that may be harmful or
malicious in nature, we are working on enhancing security by
including a more robust execution sandbox for code that runs
in the browser.

VIII. CONCLUSION

In this paper, we present Milo, a novel visual language
targeting new learners in the field of Data Science and Machine
Learning. We present our implementation of Milo, that uses
modern web technologies to create a completely browser based
platform for Data Science Education. Through our preliminary
user study, we show that a visual programming environment
is an effective platform for introductory courses on Data
Science. Additionally, we establish a direction for future work
in improving Milo.

CODE FOR PROTOTYPE

To facilitate research and further evaluation of our work,
we have released our code on GitHub under an open source
license, and can be found at https://miloide.github.io/.

214

(1]
(2]
[3]

(4]

(5]

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

REFERENCES

L. E. G. Team, “Linkedin’s 2017 u.s. emerging jobs report,” December
2017.

Class central: A popular online course aggregator. [Online]. Available:
https://www.class-central.com/

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment.” ACM Transactions on
Computing Education, vol. 10, no. 4, pp. 1-15, Nov 2011.

A. A. Disessa and H. Abelson, “Boxer: A reconstructible computational
medium.” Communications of the ACM, vol. 29, no. 9, pp. 859-868,
Sept 1986.

G. EP,, “Visual programming environments: Paradigms and systems,”
1990.

[6]

[7]

[8
[9]

[10]
lems,

215

Y. Zhang, M. Ward, N. Hachem, and M. Gennert, “A visual program-
ming environment for supporting scientific data analysis.” Proceedings
1993 IEEE Symposium on Visual Languages., 1993.

A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura,
“Blockpy: An open access data-science environment for introductory
programmers,” Computer, vol. 50, no. 5, pp. 18-26, May 2017.
[Online]. Available: doi.ieeecomputersociety.org/10.1109/MC.2017.132
E. Alpaydin, Introduction to machine learning. The MIT Press, 2010.
M. B. Gilboy, S. Heinerichs, and G. Pazzaglia, “Enhancing student
engagement using the flipped classroom,” Journal of nutrition education
and behavior, vol. 47, no. 1, pp. 109-114, 2015.

R. A. Fisher, “The use of multiple measurements in taxonomic prob-
” Annals of human genetics, vol. 7, no. 2, pp. 179-188, 1936.

